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Abstract

Background and Aims: The causal biomarkers for metabol-
ic dysfunction-associated steatotic liver disease (MASLD) and 
their clinical value remain unclear. In this study, we aimed to 
identify biomarkers for MASLD and evaluate their diagnos-
tic and prognostic significance. Methods: We conducted a 
Mendelian randomization analysis to assess the causal ef-
fects of 2,925 molecular biomarkers (from proteomics data) 
and 35 clinical biomarkers on MASLD. Mediation analysis was 
performed to determine whether clinical biomarkers medi-
ated the effects of molecular biomarkers. The association 
between key clinical biomarkers and MASLD was externally 
validated in a hospital-based cohort (n = 415). A machine 
learning–based diagnostic model for MASLD was developed 
and validated using the identified molecular biomarkers. 
Prognostic significance was evaluated for both molecular and 
clinical biomarkers. Results: Six molecular biomarkers—in-
cluding canopy FGF signaling regulator 4 (CNPY4), ectonu-
cleoside triphosphate diphosphohydrolase 6 (ENTPD6), and 
major histocompatibility complex, class I, A (HLA-A)—and 
eight clinical biomarkers (e.g., serum total protein (STP)) 
were identified as causally related to MASLD. STP partially 
mediated the effect of HLA-A on MASLD (23.61%) and was 
associated with MASLD in the external cohort (odds ratio = 
1.080, 95% confidence interval: 1.011–1.155). A random 
forest model demonstrated high diagnostic performance 

(AUC = 0.941 in training; 0.875 in validation). High expres-
sion levels of CNPY4 and ENTPD6 were associated with the 
development of and poorer survival from hepatocellular car-
cinoma. Low STP (<60 g/L) predicted all-cause mortality (HR 
= 2.50, 95% confidence interval: 1.22–5.09). Conclusions: 
This study identifies six causal molecular biomarkers (e.g., 
CNPY4, ENTPD6, HLA-A) and eight clinical biomarkers for 
MASLD. Notably, STP mediates the effect of HLA-A on MASLD 
and is associated with all-cause mortality.

Citation of this article: Feng G, Targher G, Byrne CD, He 
N, Mi M, Liu Y, et al. Biomarker Discovery for Metabolic Dys-
function-associated Steatotic Liver Disease Utilizing Mende-
lian Randomization, Machine Learning, and External Valida-
tion. J Clin Transl Hepatol 2025. doi: 10.14218/JCTH.2025. 
00270.

Introduction
Metabolic dysfunction-associated steatotic liver disease (MA-
SLD) has attracted increasing attention, with a global preva-
lence of around 30–35%.1 A recent epidemiological model 
prediction suggests that by 2030, the global prevalence of 
MASLD will rise to 36.8%, corresponding to approximately 
101.2 million people. By 2050, the prevalence is expected to 
increase further to 41.4%, affecting approximately 122 mil-
lion people.2 With this rising prevalence, the disease burden 
of MASLD-related liver cancer has also become increasingly 
significant.3 Globally, incident cases, deaths, and disability-
adjusted life years attributable to MASLD-related liver cancer 
in 2019 increased by 205%, 195%, and 166%, respectively, 
compared with 1990.4 In the United States, MASLD has be-
come the leading cause of liver cancer among liver transplant 
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candidates.5
Despite growing awareness of MASLD, the causal bio-

markers underlying this condition remain unclear.6 Identify-
ing such biomarkers has become an urgent research priority. 
As an effective tool for causal inference, Mendelian randomi-
zation (MR) can reduce confounding and reverse causation 
biases inherent in observational studies by using genetic var-
iations as instrumental variables, thereby providing more ro-
bust evidence for causal relationships between diseases and 
related factors.7,8 Although some studies have applied MR 
to investigate genetic susceptibility and potential biomarkers 
for MASLD, most published research has focused on a limited 
number of biomarkers, lacking a systematic and comprehen-
sive approach.9,10

Biomarkers related to MASLD include not only tradition-
al clinical biomarkers but also novel molecular biomarkers 
identified through multi-omics technologies.11 Clinical bio-
markers, as standard medical indicators, are widely used for 
disease diagnosis, prognostic assessment, and therapeutic 
monitoring due to their accessibility and established clinical 
utility.11 In contrast, molecular biomarkers reflect the under-
lying mechanisms of disease development and progression 
and are typically derived from multi-omics platforms such 
as transcriptomics and proteomics.11,12 Although many bio-
markers associated with MASLD have been identified, their 
clinical significance remains insufficiently characterized.13 
When used collectively, these biomarkers have the poten-
tial to improve the accuracy of noninvasive MASLD diagnosis, 
thereby reducing the need for liver biopsies.14,15 Moreover, 
they may serve as prognostic indicators; for example, the 
novel acMASH index has been shown to correlate with all-
cause mortality risk and assist in risk stratification.16 There-
fore, understanding the clinical and translational relevance of 
biomarkers with a confirmed causal relationship to MASLD is 
critically important.

In this study, we aimed to identify causal molecular 
biomarkers (based on proteomics data) and clinical bio-
markers associated with MASLD, and to evaluate their di-
agnostic and prognostic significance. First, we conducted 
MR analysis to assess the causal effects of 2,925 mo-
lecular biomarkers and 35 clinical biomarkers on MASLD, 
thereby revealing the causal relationships between these 
biomarkers and MASLD. Mediation analysis was performed 
to determine whether key clinical biomarkers mediated 
the effects of molecular biomarkers (exposures) on MA-
SLD (the outcome). The association between key clinical 
biomarkers and MASLD was also externally validated in a 
hospital-based cohort. Second, we applied six machine-
learning algorithms to develop and validate a novel nonin-
vasive diagnostic model for MASLD based on the identified 
molecular biomarkers. Third, we explored the prognostic 
value of molecular biomarkers for the development of and 
poorer survival from hepatocellular carcinoma (HCC) using 
data from The Cancer Genome Atlas. We also assessed the 
prognostic significance of key clinical biomarkers for all-
cause mortality and cause-specific mortality by analyzing 
prospective data from the National Health and Nutrition 
Examination Survey (NHANES).

Methods

Data collection of molecular and clinical biomarkers 
and MASLD for MR analysis
In this study, the molecular biomarkers were derived from 
proteomics data obtained from the FinnGen database.17 This 
database included 619 samples encompassing 2,925 mole-

cules, such as apolipoprotein E (APOE), canopy FGF signaling 
regulator 4 (CNPY4), ectonucleoside triphosphate diphos-
phohydrolase 6 (ENTPD6), major histocompatibility complex, 
class I, A (HLA-A), secretogranin III (SCG3), and torsin 1A 
interacting protein 1 (TOR1AIP1), which were publicly re-
leased in April 2024.17 Our clinical biomarkers comprised 35 
blood and urine biomarkers from the UK Biobank dataset, 
which included 363,228 individuals.18 These 35 biomarkers 
are extensively utilized in clinical diagnostics and contribute 
to assessing various physiological functions, including serum 
albumin, APOE, gamma-glutamyl transferase (GGT), high-
density lipoprotein cholesterol (HDL-C), insulin-like growth 
factor 1 (IGF-1), total protein, triglycerides, and urinary so-
dium. Data on MASLD were derived from a meta-analysis 
of genome-wide association studies (GWAS) involving four 
cohorts with electronic health record–documented MASLD 
among participants of European ancestry (8,434 cases and 
770,180 controls).19

Instrumental variable screening and MR analysis
We referred to prior literature for the screening criteria of 
instrumental variables (IVs) (Supplementary Method 1).20 
For example, in selecting IVs for the 35 clinical biomark-
ers, single-nucleotide polymorphisms (SNPs) were selected 
based on genome-wide significance (P < 5 × 10−8) and were 
subsequently clumped to ensure independence using a link-
age disequilibrium threshold of r2 < 0.001 within a 10,000-
kb distance. A two-step, two-sample MR approach was em-
ployed to assess the causal relationships between molecular 
biomarkers and MASLD, as well as between clinical biomark-
ers and MASLD. This approach is a genetics-based method 
for causal inference, conducted through two independent 
sample datasets in two stages. In the first step, GWAS was 
used to identify genetic variants (such as SNPs) significant-
ly associated with the exposure factor in the initial sample, 
thereby establishing a strong link between these variants 
and the exposure.20 In the second step, these instrumental 
variables were tested for association with disease outcomes 
in a second, independent sample using statistical models, 
such as the inverse-variance weighted (IVW) method, while 
conducting heterogeneity and pleiotropy tests to validate the 
plausibility of the causal hypothesis.20 To ensure the reliabil-
ity of the MR results, we conducted heterogeneity, pleiotropy, 
and sensitivity analyses (Supplementary Method 2). All MR 
analyses employed the IVW method as the primary test for 
causal associations, and results were verified using the MR-
Egger, weighted median, weighted mode, and simple mode 
methods. Since the IVW method served as the main causal 
association test, we corrected IVW results using the false 
discovery rate method; Pfdr < 0.05 was considered statisti-
cally significant. For other analyses without false discovery 
rate adjustment, a P-value < 0.05 was considered indicative 
of statistical significance.

Mediation effect analysis to identify key clinical bio-
markers with a mediating role
Mediation effect analysis was used to determine whether key 
clinical biomarkers mediated the causal relationship between 
molecular biomarkers and MASLD. The formulas for calculat-
ing each effect size were as follows: total effect = C × 100%, 
indirect effect = A × B × 100%, direct effect (C′) = [C – (A × 
B) × 100%], and the proportion of the mediation effect = (A 
× B) / C × 100%. Among them, A is the β1 value of the MR 
analysis between the key protein and the clinical marker; B 
is the β2 value of the MR analysis between the clinical marker 
and MASLD; and C is the β value of the MR analysis between 
the key protein and MASLD.
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Validation of the association between key clinical 
biomarkers and MASLD
Through mediation analyses, we identified key clinical bio-
markers that mediate the effects of molecular biomarkers 
on MASLD. To further validate externally the association be-
tween these biomarkers and MASLD, we utilized a follow-up 
cohort of MASLD patients from the First Affiliated Hospital 
of Xi’an Medical University who had undergone vibration-
controlled transient elastography examinations.20 Patients 
with a controlled attenuation parameter value ≥ 248 dB/m, 
as assessed by FibroScan, were considered to have hepatic 
steatosis (Supplementary Method 3).21

Machine learning (ML) algorithms for MASLD based 
on the identified molecular biomarkers
We employed six widely used ML algorithms—including Ex-
treme Gradient Boosting (XGBoost), Random Forest (RF), 
K-Nearest Neighbors (KNN), Support Vector Machine, Mul-
tilayer Perceptron, and Light Gradient Boosting Machine—to 
develop a noninvasive diagnostic model for MASLD. Expres-
sion profiles of the identified molecular biomarkers were ob-
tained from the Gene Expression Omnibus database, with 
GSE89632 (n = 63) serving as the training set and GSE48452 
(n = 73) as the external validation cohort.

Evaluation of the prognostic significance of the iden-
tified molecular and clinical biomarkers
We further evaluated the prognostic value of the identified 
molecular biomarkers, particularly their impact on HCC de-
velopment and overall survival (Supplementary Method 4). 
To investigate associations between clinical biomarkers and 
the risk of all-cause and cause-specific mortality, we ana-
lyzed prospective data from NHANES collected between 1999 
and 2006 (Supplementary Method 5). The study design is 
illustrated in Figure 1.

Results

Molecular biomarkers causally related to MASLD
The IVW algorithm indicated that among the 2,925 molec-
ular biomarkers, only six exhibited a significant relation-
ship with MASLD (Fig. 2A). The mean F-statistics for the 
selected IVs were as follows: APOE (F = 36.919), CNPY4 
(F = 26.539), ENTPD6 (F = 43.279), HLA-A (F = 38.635), 
SCG3 (F = 30.938), and TOR1AIP1 (F = 48.678). These 
values were well above the threshold of 10, indicating that 
all the IVs were strong instruments. The IVW algorithm 
showed that the odds ratio (OR) for APOE was 1.057 (95% 
confidence interval (CI): 1.031–1.083, Pfdr = 4.62E-03), 
for CNPY4 was 1.054 (95% CI: 1.029–1.081, Pfdr = 8.38E-
03), for ENTPD6 was 1.031 (95% CI: 1.016–1.045, Pfdr = 
5.75E-03), for HLA-A was 0.969 (95% CI: 0.960–0.979, 
Pfdr = 1.81E-06), for SCG3 was 0.956 (95% CI: 0.937–
0.975, Pfdr = 4.62E-03), and for TOR1AIP1 was 0.964 (95% 
CI: 0.950–0.979, Pfdr = 8.13E-04). Results from the other 
four algorithms are shown in Supplementary Table 1. The 
Cochran’s Q test analysis revealed no heterogeneity in the 
results for APOE, CNPY4, ENTPD6, HLA-A, SCG3, and TO-
R1AIP1 (Supplementary Table 2). Subsequently, the MR-
Egger intercept test was conducted to evaluate the pres-
ence of pleiotropy among the IVs (Supplementary Table 
2). The results indicated no horizontal pleiotropy between 
these six biomarkers and MASLD (Supplementary Table 
2). The leave-one-out sensitivity analysis confirmed that 
the relationship between TOR1AIP1 and MASLD remained 

stable (Fig. 2B). From the scatter plots, the relationship 
between TOR1AIP1 and MASLD showed a consistent trend 
(with OR values all greater than 1) across the five MR al-
gorithms, further supporting the robustness of our find-
ings (Fig. 2C). Scatter plots and leave-one-out sensitiv-
ity analyses for the remaining five proteins are detailed 
in Supplementary Figures 1–5. The reverse MR analysis 
found no significant association between MASLD and these 
six proteins.

Clinical biomarkers causally related to MASLD
The IVW algorithm indicated that among the 35 clinical 
biomarkers, only eight exhibited a significant relationship 
with MASLD (Fig. 3A). The mean F-statistics for the select-
ed IVs were as follows: albumin (F = 73.095), ApoA (F = 
135.563), GGT (F = 129.355), HDL-C (F = 145.250), IGF-1 
(F = 98.572), urinary sodium (F = 40.886), total protein (F 
= 63.070), and triglycerides (F = 147.741). All these val-
ues exceeded the threshold of 10, indicating that the IVs 
were strong instruments. The IVW algorithm revealed that 
the OR for albumin was 1.373 (95% CI: 1.140–1.654, Pfdr = 
4.11E-03), for ApoA was 0.811 (95% CI: 0.695–0.946, Pfdr 
= 0.026), for GGT was 1.281 (95% CI: 1.167–1.406, Pfdr = 
1.25E-06), for HDL-C was 0.792 (Pfdr = 7.53E-05), for IGF-1 
was 0.870 (95% CI: 0.784–0.964, Pfdr = 0.027), for urinary 
sodium was 2.583 (95% CI: 1.407–4.743, Pfdr = 8.548E-
03), for total protein was 1.248 (95% CI: 1.083–1.438, Pfdr 
= 8.488E-03), and for triglycerides was 1.392 (95% CI: 
1.239–1.563, Pfdr = 2.15E-07). The MR-Egger intercept test 
demonstrated no horizontal pleiotropy between any of these 
biomarkers and MASLD. The scatter plots indicated that the 
relationship between total protein and MASLD exhibited a 
consistent trend (with OR values all greater than 1) across 
the five MR algorithms, further supporting the robustness 
of the findings (Fig. 3B). Additionally, a Manhattan plot was 
used to display the distribution characteristics of SNPs for 
total protein after removing linkage disequilibrium (Fig. 3C). 
Scatter plots for the other seven clinical biomarkers are 
shown in Supplementary Figures 6–9.

Total protein demonstrated a significant mediating 
effect in the relationship between HLA-A and MASLD
Before conducting the mediation analysis, we used an MR 
approach to explore the causal relationships between the 
six molecular biomarkers (exposures) and the eight clinical 
biomarkers (outcomes), which served as a prerequisite for 
the mediation analysis. This analysis revealed that the OR 
between HLA-A and total protein was 0.967 (95% CI: 0.948–
0.987, Pfdr = 1.15E-02). The results confirmed no horizontal 
pleiotropy between HLA-A and MASLD (MR-Egger intercept 
= –0.011, Pfdr = 0.556). The scatter plots and leave-one-out 
sensitivity analyses for the relationship between HLA-A and 
total protein are presented in Supplementary Figure 10. Fur-
ther mediation analysis showed that total protein exhibited a 
significant mediating effect in the association between HLA-
A and MASLD (Fig. 4A, B). Specifically, the total effect was 
0.969 (95% CI: 0.960–0.979, Pfdr = 1.81 × 10−6), with total 
protein mediating 23.61% of the relationship between HLA-A 
and MASLD (OR = 0.993, Pfdr < 0.05).

Validation of the relationship between serum total 
protein levels and MASLD
The independent validation cohort included 330 patients 
with MASLD confirmed by vibration-controlled transient elas-
tography and 85 controls. Baseline characteristics of the 
participants are shown in Supplementary Table 3. In the 
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subsequent multivariable logistic regression analysis (Sup-
plementary Table 4), serum total protein levels showed a 
positive association with MASLD risk that remained statisti-
cally significant across all models. Specifically, in the age- 
and sex-adjusted model, the OR for MASLD was 1.103 (95% 
CI: 1.064–1.143). In multivariable model 1, which adjusted 
for age, sex, body mass index, diabetes, and hypertension, 
the OR was 1.092 (95% CI: 1.052–1.134, P < 0.001). Even 
after additional adjustment for serum liver enzymes, lipids, 
creatinine, HbA1c, and platelet count (adjusted model 2), 
the association between total protein and MASLD remained 
significant, with an adjusted OR of 1.080 (P = 0.023).

Performance of multiple machine learning algo-
rithms for MASLD based on six molecular biomarkers
We developed a non-invasive model for diagnosing MASLD 
using the six identified molecular biomarkers and six com-
monly used supervised machine-learning algorithms. As 
shown in Figure 5A, the RF model demonstrated the best 
performance in the training set, achieving an AUC of 0.941 
(95% CI: 0.829–1.000), followed by KNN (AUC = 0.885, 
95% CI: 0.732–1.000) and XGBoost (AUC = 0.834, 95% CI: 
0.662–0.975). Conversely, the MLP model performed poorly, 
with an AUC of 0.536 (95% CI: 0.244–0.827). Additionally, 
we applied the Shapley Additive exPlanations method to ana-

Fig. 1.  Flowchart of the study. First, we conducted MR analysis to identify six molecular biomarkers and eight clinical biomarkers causally associated with MASLD. 
Mediation analysis was performed to determine whether key clinical biomarkers mediate the effects of molecular biomarkers (exposures) on MASLD (outcome). We 
found that total protein demonstrated a significant mediating effect in the relationship between HLA-A and MASLD. The association between total protein and MASLD 
was also externally validated in a hospital-based cohort. Second, we applied six machine learning algorithms to develop and validate a novel noninvasive diagnostic 
model for MASLD based on the identified molecular biomarkers. Third, we explored the prognostic value of molecular biomarkers for the development of, and poorer 
survival from, HCC by analyzing data from TCGA. We also evaluated the prognostic value of key clinical biomarkers for all-cause and cause-specific mortality by analyz-
ing prospective data from the NHANES. HCC, hepatocellular carcinoma; MR, mendelian randomization; MASLD, metabolic dysfunction-associated steatotic liver disease; 
GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; VCTE, vibration-controlled transient elastography; HLA-A, human leukocyte antigen A; NHANES, 
National Health and Nutrition Examination Survey.
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lyze the random forest model. As illustrated in Figure 5B, this 
analysis revealed that CNPY4, SCG3, TOR1AIP1, and ENTPD6 
were the top four molecular features influencing the model 
output. Notably, CNPY4 exhibited the highest mean Shap-
ley Additive exPlanations value, indicating its pivotal role in 
distinguishing MASLD from non-MASLD individuals. In the 
validation dataset (GSE48452) (Fig. 5C), the RF model main-
tained superior discriminative performance with an AUC of 
0.875, demonstrating robust generalization and discrimina-
tive capability. KNN and XGBoost also showed consistent per-
formance, while MLP continued to exhibit poor performance 
in the validation set (GSE48452). To assess the robustness 
and potential overfitting of the RF model, we performed 500 
bootstrap resampling iterations separately in both the train-
ing and validation sets. The resulting ROC curves with 95% 
confidence intervals are shown in Supplementary Figure 11.

Prognostic molecular and clinical biomarkers associ-
ated with MASLD
We further analyzed the prognostic significance of key mo-
lecular biomarkers closely associated with MASLD, particu-
larly their impact on the development of HCC and overall sur-
vival. We found that CNPY4 was significantly upregulated in 
HCC (Supplementary Fig. 12). Across multiple cancer types, 
elevated CNPY4 expression demonstrated varying degrees 
of association with overall survival, with a particularly strong 

link in LIHC, where high CNPY4 expression was significantly 
associated with poor prognosis (HR = 1.753, Supplementary 
Fig. 13). Notably, in LIHC, CNPY4 expression was positively 
correlated with several immune cell types, especially mac-
rophages, dendritic cells, and T helper cells (Supplementary 
Fig. 14), suggesting that CNPY4 may contribute to tumor 
progression by modulating the tumor immune microenviron-
ment. Similarly, we observed that ENTPD6 was significantly 
overexpressed in LIHC (P < 0.001, Supplementary Fig. 15). 
Survival analysis indicated that high ENTPD6 expression 
was significantly associated with poorer overall survival in 
patients (HR = 1.483, P < 0.05, Supplementary Fig. 16), 
highlighting ENTPD6 as another potential adverse prognos-
tic biomarker. In LIHC, ENTPD6 expression also exhibited 
significant positive associations with various immune cell 
populations, including dendritic cells, macrophages, CD8+ T 
cells, T helper cells, and regulatory T cells (P < 0.05, Sup-
plementary Fig. 17).

Given that serum total protein level mediates the effect 
of the molecular biomarker HLA-A on MASLD, we regarded 
it as an important clinical biomarker. Therefore, we further 
investigated its prognostic significance using data from the 
NHANES study. A total of 41,474 individuals were initially 
identified from the NHANES database. After excluding par-
ticipants with missing data for serum total protein levels and 
mortality, 3,540 individuals were included in the final analy-
sis. Kaplan–Meier survival curves are shown in Figure 6. In-

Fig. 2.  Causal molecular biomarkers related to MASLD. (A) Forest plot displaying the causal effect estimates for six molecular biomarkers significantly associated 
with MASLD based on the IVW method; (B) Leave-one-out sensitivity analysis plot for TOR1AIP1; (C) Scatter plot of SNP effects on TOR1AIP1 (exposure) and MASLD 
(outcome). APOE, apolipoprotein E; CNPY4, canopy FGF signaling regulator 4; ENTPD6, ectonucleoside triphosphate diphosphohydrolase 6; HLA-A, major histocompat-
ibility complex, class I, A; MR, mendelian randomization; MASLD, metabolic dysfunction-associated steatotic liver disease; OR, odds ratio; SCG3, secretogranin III; 
SNP, single nucleotide polymorphism; TCGA, The Cancer Genome Atlas; TOR1AIP1, torsin family 1 member A interacting protein 1; VCTE, vibration-controlled transient 
elastography; IVW, inverse variance weighted.
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Fig. 3.  MR analysis revealing causal relationships between clinical biomarkers and MASLD. (A) Forest plot displaying the causal effect estimates for eight 
clinical biomarkers significantly associated with MASLD. (B) Scatter plot showing the MR analysis for total protein as exposure and MASLD as the outcome. (C) Man-
hattan plot illustrating the distribution of SNPs associated with total protein across chromosomes. The -log10(P) values are plotted against chromosomal positions, 
highlighting genome-wide significant SNPs after linkage disequilibrium clumping. OR, Odds ratio; CI, Confidence interval; SNP, Single nucleotide polymorphism; MR, 
Mendelian randomization; IVW, Inverse variance weighting; GGT, Gamma-glutamyl transferase; HDL-C, High-density lipoprotein cholesterol; IGF-1, Insulin-like growth 
factor 1; MASLD, metabolic dysfunction-associated steatotic liver disease.

Fig. 4.  Mediation analysis exploring the role of total protein in the association between HLA-A and MASLD. (A) Conceptual framework of the mediation anal-
ysis. Exposure (proteins) influences the outcome (MASLD) through direct and indirect pathways. The indirect effect is mediated by clinical biomarkers (mediators), while 
the direct effect bypasses the mediators. The total effect (β) is the sum of the direct effect (β2) and the mediation effect (β1 × β2). (B) Proportion of the mediation and 
direct effects for the relationship between HLA-A, total protein, and MASLD. The indirect effect mediated by total protein accounts for 23.61% of the total association, 
whereas the direct effect contributes 76.39%. MASLD, metabolic dysfunction-associated steatotic liver disease; HLA-A, major histocompatibility complex, class I, A.
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dividuals with total protein levels < 60 g/L had a significantly 
higher risk of all-cause mortality compared to those with 
levels ≥ 60 g/L (HR = 2.180; 95% CI: 1.188–4.002) in the 
age- and sex-adjusted model. The HR was 2.769 (95% CI: 
1.441–5.319) in regression model 1, which was adjusted for 
age, sex, marital status, hypertension, diabetes, and body 
mass index, and an HR of 2.495 (95% CI: 1.224–5.087) in 
regression model 2, which was additionally adjusted for se-
rum GGT, ALT, total cholesterol, triglycerides, and platelet 
count (Supplementary Table 5).

Discussion
In this study, we identified several molecular and clinical bio-
markers causally associated with MASLD and explored their 
diagnostic significance for MASLD as well as their prognos-
tic relevance for mortality outcomes. Notably, total serum 
protein levels were found to partially mediate the effect of 
HLA-A on the risk of MASLD, revealing a novel immuno-
metabolic causal pathway. To translate these findings into a 
practical clinical tool, we developed a non-invasive diagnostic 
model based on the six MR-identified proteins using multiple 

machine learning algorithms. Among these, the RF model 
demonstrated excellent performance (AUC = 0.941 in the 
training set and 0.875 in the validation set), underscoring 
its potential utility in early MASLD screening and diagnosis. 
Additionally, we demonstrated that higher expression levels 
of CNPY4 and ENTPD6 were associated with poorer overall 
survival in HCC, while lower serum total protein levels were 
linked to increased all-cause mortality in the general popula-
tion. These findings suggest that certain MASLD-related bio-
markers may have prognostic relevance in broader clinical 
settings.

In our study, six proteins (molecular biomarkers) were 
identified as having a significant causal relationship with MA-
SLD. APOE is an essential component of chylomicrons, and 
studies have shown that polymorphisms in the APOE gene 
are closely related to MASLD development.22 Amzolini and 
colleagues reported that the frequency of HLA-A25 in pa-
tients with MASLD was significantly lower than in healthy 
controls.23 Shin et al. found that deletion of the TOR1AIP1 
gene induced MASLD development.24 Currently, few reports 
exist on the associations of CNPY4, ENTPD6, and SCG3 with 
MASLD, and these proteins may represent key targets for 

Fig. 5.  Performance evaluation and feature importance interpretation of machine learning models. (A) ROC curves of six machine learning algorithms in 
the training set. (B) Feature importance analysis using SHAP. (C) ROC curves of the six machine learning models in the independent validation set. AUC, Area under 
the curve; ROC, Receiver operating characteristic; SVM, Support vector machine; LASSO, Least absolute shrinkage and selection operator; XGBoost, Extreme gradi-
ent boosting; SHAP, SHapley additive explanations; GGT, Gamma-glutamyl transferase; HDL-C, High-density lipoprotein cholesterol; APOE, Apolipoprotein E; CNPY4, 
Canopy FGF signaling regulator 4; SCG3, Secretogranin III; TOR1AIP1, Torsin family 1 member A interacting protein 1; ENTPD6, ectonucleoside triphosphate diphos-
phohydrolase 6; HLA-A, Major histocompatibility complex, class I, A.
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future research. CNPY4 is localized in the endoplasmic re-
ticulum and assists in protein maturation and lipid synthesis. 
Hotta et al. found that the rs3764220 variant in the SCG3 
gene was associated with metabolic syndrome.25 ENTPD6 
belongs to the ectonucleoside triphosphate diphosphohy-
drolase family; its encoded proteins hydrolyze nucleoside 
triphosphates and diphosphates, playing a crucial role in cell 
signaling and energy metabolism.26 A recent MR study iden-
tified potential targets for abdominal obesity and found that 
ENTPD6 may be a novel biomarker for interventions target-
ing visceral adipose tissue.27

Among 35 blood and urine biomarkers, eight were identi-
fied as closely associated with MASLD. A meta-analysis of 
12 studies revealed that circulating IGF-1 levels were sig-

nificantly lower in individuals with MASLD than in healthy 
controls.28 GGT in human serum primarily originates from 
the liver and biliary system. Serum GGT level serves not 
only as a conventional liver function marker but also plays a 
broader role in metabolic health.29 Additionally, serum GGT 
is included in the fatty liver index equation used to identify 
hepatic steatosis.30 Furthermore, urinary sodium concentra-
tion was closely associated with MASLD (OR = 2.48, 95% CI: 
1.52–4.06).31

HLA-A is a member of the major histocompatibility complex 
class I family and plays a central role in antigen presentation 
and immune surveillance. Genetic variations in HLA-A have 
previously been associated with metabolic and inflammatory 
diseases.32–34 This study revealed that total protein functions 

Fig. 6.  Kaplan–Meier survival curves for all-cause and cardiovascular mortality stratified by serum total protein levels (<60 g/L vs. ≥60 g/L). (A) 
Kaplan–Meier survival curve for all-cause mortality stratified by serum total protein levels (<60 g/L vs. ≥60 g/L). (B) Kaplan–Meier survival curve for cardiovascular 
mortality stratified by serum total protein levels (<60 g/L vs. ≥60 g/L).
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as a (partial) mediator in the causal pathway from HLA-A 
to MASLD, accounting for 23.61% of the total effect. Our 
mediation analysis indicates that downregulation of HLA-A 
may lead to increased total protein levels, which in turn could 
elevate MASLD risk. The liver is enriched with CD4+ T helper 
cells, CD8+ cytotoxic T cells, and B lymphocytes, all contrib-
uting to persistent inflammation and tissue remodeling.35,36 
Mechanistically, HLA-A, a core component of MHC class I 
molecules, is responsible for presenting endogenous anti-
gens to CD8+ T cells, thereby maintaining immune surveil-
lance and homeostasis. When HLA-A expression is reduced, 
impaired antigen presentation leads to dysfunctional CD8+ 
T-cell activation and inefficient clearance of endogenous anti-
gens derived from apoptotic cells or lipotoxic stress.37,38 The 
persistence of these antigens may induce chronic antigenic 
stimulation, activate B cells, and promote polyclonal immu-
noglobulin production, resulting in elevated serum globulin 
and thus increased total protein.39 The consequent elevation 
in globulin contributes to increased total protein concentra-
tions, indicative of immune activation, which plays a crucial 
role in MASLD pathogenesis and progression.40 These find-
ings suggest that HLA-A downregulation may indirectly con-
tribute to MASLD by promoting immune pathways.

In this study, six ML algorithms were used to construct a 
noninvasive MASLD diagnostic model. The application of ML 
in MASLD has made remarkable progress in recent years, 
positioning it as a pivotal tool for precise diagnosis and 
treatment.41 ML broadly includes supervised, unsupervised, 
semi-supervised, and reinforcement learning based on train-
ing methods.42 In our analysis, we used supervised ML and 
found that RF had the best discriminative power, outperform-
ing other algorithms. RF is an ensemble learning algorithm 
based on decision trees, which significantly improves model 
accuracy by integrating predictions from multiple decision 
trees.43 Compared with other algorithms, RF has better tol-
erance for noise and outliers because its prediction results 
are based on synthesizing multiple decision trees.44 Further-
more, RF demonstrates resistance to overfitting and strong 
generalization abilities through its randomized construction 
approach.43

Previous studies have shown that patients with MASLD 
are at increased risk of developing HCC.45 In our study, we 
found that CNPY4 and ENTPD6 not only contribute to the 
pathogenesis of MASLD but may also play a role in HCC de-
velopment, further supporting their significance and utility as 
molecular biomarkers related to liver disease. Moreover, both 
CNPY4 and ENTPD6 were associated with poor prognosis in 
HCC, suggesting their potential as prognostic biomarkers 
in liver diseases. CNPY4 is closely associated with immune 
regulation and exhibits carcinogenic effects across various 
tumors.46 ENTPD6 is involved in extracellular purine metabo-
lism and may contribute to tumor metabolic reprogramming 
by modulating mitochondrial function. Previous studies have 
consistently demonstrated that the rs738409 variant in the 
PNPLA3 gene, which encodes patatin-like phospholipase 
domain-containing protein 3, significantly increases the risk 
of both MASH and MASLD-related HCC.47,48 This variant im-
pairs triglyceride hydrolysis in hepatocytes, promoting lipid 
accumulation and resulting in more than a twofold increase 
in MASH risk (compared to healthy controls) and a 2.2-fold 
increased risk of MASLD-related HCC (compared to MASLD 
patients without the variant).47,48 However, as a static genet-
ic susceptibility variant, PNPLA3 is primarily useful for long-
term risk prediction and does not reflect dynamic biological 
changes during disease progression. In contrast, CNPY4 and 
ENTPD6 are expression-based protein biomarkers that can 
be quantitatively monitored and may offer greater potential 

for clinical translation, particularly in dynamic risk stratifica-
tion, progression surveillance, and therapeutic response as-
sessment in MASLD-HCC.

Additionally, based on prospective data from the NHANES 
study, we found that individuals with serum total protein lev-
els below 60 g/L, a marker identified as a potential mediator 
of mortality, exhibited an increased risk of all-cause mor-
tality. This may be because hypo-proteinemia often reflects 
inadequate protein intake or synthesis, leading to malnutri-
tion, impaired organ function, delayed tissue repair, and re-
duced resilience to illness. Hypo-proteinemia can also result 
in edema, ascites, hypovolemia, and tissue hypoperfusion, 
potentially triggering complications such as renal dysfunction 
and hypotension, all of which may contribute to increased 
all-cause mortality.49

Although this study employed the MR method, it has sev-
eral limitations. First, the GWAS data lack extensive valida-
tion across different ethnic groups. Therefore, future studies 
must validate these findings in diverse populations to confirm 
the causal relationships. Second, while we identified causal 
proteins and biomarkers associated with MASLD, the specific 
biological mechanisms underlying these findings remain un-
explored. Third, MASLD is a metabolically driven liver disease 
with complex and multifactorial etiologies. Other potential 
mediators, particularly those related to systemic inflamma-
tion or immune-metabolic interactions, may exist but were 
not included in the current analysis due to limitations in the 
available datasets. Future studies incorporating more com-
prehensive inflammatory markers, multi-omics data, and 
immune phenotyping are warranted to refine and expand 
the mediation pathway models. Fourth, the hospital-based 
cohort used in this study was derived from a tertiary medical 
center and had a relatively limited sample size, which may 
introduce selection bias. Compared with the general MASLD 
population, patients treated at tertiary centers are more 
likely to have complex disease presentations and a higher 
burden of metabolic comorbidities. Such differences in popu-
lation characteristics may affect the generalizability of our 
findings.

Conclusions
We identify six causal molecular biomarkers (e.g., CNPY4, 
ENTPD6, HLA-A) and eight clinical biomarkers (e.g., serum 
total protein) for MASLD across various independent cohorts. 
Serum total protein levels partially mediated the effect of 
HLA-A on MASLD, highlighting a novel immune-metabolic 
pathway. Based on these findings, we develop a random 
forest model that demonstrates high accuracy in identifying 
MASLD. Additionally, CNPY4 and ENTPD6 are associated with 
poor survival in HCC, while low serum total protein levels 
predicted higher all-cause mortality. These findings support 
a multi-omics framework for biomarker-driven diagnosis and 
risk prediction in MASLD.
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